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Summary: The reaction of a-methylthio aldehydes 4(R=1°, 
2') with allyltriphenylstannane 5 in the presence of SnC14 
gave anti-8-methylthio alcohols 6 in excellent selectivity. 

In connection with the recent findings that conversion of B-alkylthio 

alcohols 2 and 3 into olefins' or epoxides 2 proceeds with complete 

stereospecificity, we examined the synthesis of the stereochemically pure 2 and 

3 by reduction of the corresponding a-methylthio or a-phenylthio ketones 1 and 

found that Z'n(BH4)2 reduction gave the expected anti-3(chelation-controlled 

products) only in limited cases, while L-Selectride reduction afforded syn-2 

(non-chelation-controlled Felkin-Anh products) with remarkably high 

stereoselectivity in every case, except when R1 was secondary.3 These results 

are in sharp contrast with those obtained in the reduction of a-alkoxy 

ketones.4 The poor anti-selectivity observed in Zn(BH4)2 reaction could be 

ascribed to weaker affinity of sulfur than oxygen to Zn2+ and excellent syn- 

selectivity observed in L-Selectride reduction to a large contribution of a 

methylthio group in stabilizing a Felkin-Anh model.5 
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Taking into accounts of the unique characteristics of sulfur function in 

alkylthio ketones 1 observed above, we then focused our attention to the 

alkylation of a-methylthio aldehydes 46 with allyltriphenylstannane 5 in the 

presence of SnC14- These reagents were chosen since they have a strong 
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Table I. Allylation of a-Methylthio Aldehyde 4 with Allyltriphenylstannane 5 

SMe Lewis SMe 

u SnPhg + OHC A R- 

CHZC12 6H 
5 4 -7O'-+ -25' anti - 6 

SMe 

++R 

OH 

syn- 7 

SnC14 (2 eq.)*l 
R Entry Entry 

BF3.Et20(2 es.1 

6 : 7 (Yield %) 6: 7 (yield %) 

n-Bu 1 97 : 3 (881 7 82 : 18 ( 51 ) 

CH2CH2Ph 2 94 : 6 (80) 8 79 : 21 ( 62 1 

i-Pr 3 96 : 4 (94) 9 16 : 84 ( 75 ) 

i-Pr 4 97 : 3 (82jx2 - 

c-Hexyl 5 95 : 5 (991 10 13 : a7 ( 65 ) 

Ph 6 59 : 41 ( JO ) 11 20 : 80 ( 97 ) 

*I After the reaction had been completed, the mixture was treated 
with 10% HCl to decompose Sn-complex. 

*2 One eq. of SnC14 was used. 

affinity to sulfur.J Alkylation using BF3. Et20/CH2C12 incapable of bis- 

ligation8 was also carried out for comparison. The results were shown in Table 

When R was primary or secondary alkyl group, all the reactions examined in 

the Presence of SnC14 gave anti O-methylthio alcohols 6 with excellent 

stereoselectivity in good yield, except when R was a phenyl group(entry 6). It 

should be noted that anti-6 was obtained stereoselectively even when one 

equivalent of SnC14 was used(entry 4). The relative stereochemistry of the 

products 6 and 7 was determined after conversion into the corresponding 

epoxides(Me30+BF4-; 2.5-5 % aq. NaOH. J value of epoxide protons: trans 2.2- 

2.3 Hz; cis 4.1-4.4 Hz), because the reaction was known to proceed essentially 

in SN2 fashion2cf3. 

The observed high anti-directing selectivity (Lewis acid: SnC14) is quite 

remarkable since an opposite selectivity giving syn-products has been observed 

in alkylation of the oxygen analogue of 4. Namely, reactions of a-benzyloxy 

aldehydes 8 with allyltrimethylsilane in the presence of SnClqg or with 

allyltributylstannane in the presence of MgBr2 or TiC14" have been reported to 

afford syn-B-benzyloxy alcohols 10 with high stereoselectivity. Alkylation of 

8 having the same R-group with 4 under the same reaction conditions 
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(SnC14/CH2C12) used in the reaction of 4 was undertaken. Here again, syn-10 

were obtained, which clearly demonstrated that syn-selectivity observed in 8 

was not affected by a small difference in alkylating agent, R group or reaction 

conditions. 

0CH2Ph 
M5"Ph3 5 

0CH2Ph 0CH2Ph 

OHC A R 
3 

SnC$, CH2C12 
dRtL R 

: + 
OH OH 

8 
-IO'+ -25' 

anti - 9 syn- 10 

R=CH2CH2Ph G 96 (64%) 

&c-Hex 1 >99 (66%) 

It is quite reasonable to consider a SnCl4-mediated cyclic transition 

state i for syn-directing reaction of 8.' However, further elaboration should 

be necessary to account for anti-selective additions observed in 4. A model ii 

involving a unique four co-ordinated sulfur is considered to be a plausible 

candidate. Initially, the sulfur and oxygen functions in 4 may co-ordinate 

with the more reactive SnC14 than 5 forming the same type of a transition state 

as was considered in the reaction of B(see i), which should be more rigid and 

stable than i due to a strong affinity between sulfur and tin. In this chelated 

model, SnC14 would be located on the opposite side of an R group. Here, the 

lone pair remaining on the sulfur atom is highly expected to attack 

allylstannane 5 forming ii. The fact that one equivalent of SnC14 is enough 

for completion of the reaction may eliminate a contribution of SnC14 bis- 

adducts of any kind, which supports the intermediacy of ii. Once ii is formed, 

internal alkylation should take place irreversibly producing anti-6 even if R 

is a bulky secondary alkyl group. 

Cl,;' 

y?+,, 72,, 

‘\ O 

b 

4 
Ph$nd 

H R 
l-i H 

i 

Alkylation using BF3. Et,O/CH2C12 incapable of bis-ligation presumed to 

proceed through a Felkin-Anh model5 giving anti-products, since as is 
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apparent from our previous work3 even a methylthio group contributes 

significantly in stabilizing the Felkin-Anh model. In fact, when R were 

primary, the expected anti-6 were obtained although the selectivity was not so 

satisfactory(Entry 7, 8). However, to our surprise, when R were i-propyl, 

cyclnhexyl and phenyl groups, syn-7 were obtained as main products(Entry 9-11). 

The reason is remained unknown. 
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